Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0399122, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36912683

RESUMEN

On the Tibetan Plateau, most tuberculosis is caused by indigenous Mycobacterium tuberculosis strains with a monophyletic structure and high-level drug resistance. This study investigated the emergence, evolution, and transmission dynamics of multidrug-resistant tuberculosis (MDR-TB) in Tibet. The whole-genome sequences of 576 clinical strains from Tibet were analyzed with the TB-profiler tool to identify drug-resistance mutations. The evolution of the drug resistance was then inferred based on maximum-likelihood phylogeny and dated trees that traced the serial acquisition of mutations conferring resistance to different drugs. Among the 576 clinical M. tuberculosis strains, 346 (60.1%) carried at least 1 resistance-conferring mutation and 231 (40.1%) were MDR-TB. Using a pairwise distance of 50 single nucleotide polymorphisms (SNPs), most strains (89.9%, 518/576) were phylogenetically separated into 50 long-term transmission clusters. Eleven large drug-resistant clusters contained 76.1% (176/231) of the local multidrug-resistant strains. A total of 85.2% of the isoniazid-resistant strains were highly transmitted with an average of 6.6 cases per cluster, of which most shared the mutation KatG Ser315Thr. A lower proportion (71.6%) of multidrug-resistant strains were transmitted, with an average cluster size of 2.9 cases. The isoniazid-resistant clusters appear to have undergone substantial bacterial population growth in the 1970s to 1990s and then subsequently accumulated multiple rifampicin-resistance mutations and caused the current local MDR-TB burden. These findings highlight the importance of detecting and curing isoniazid-resistant strains to prevent the emergence of endemic MDR-TB. IMPORTANCE Emerging isoniazid resistance in the 1970s allowed M. tuberculosis strains to spread and form into large multidrug-resistant tuberculosis clusters in the isolated plateau of Tibet, China. The epidemic was driven by the high risk of transmission as well as the potential of acquiring further drug resistance from isoniazid-resistant strains. Eleven large drug-resistant clusters consisted of the majority of local multidrug-resistant cases. Among the clusters, isoniazid resistance overwhelmingly evolved before all the other resistance types. A large bacterial population growth of isoniazid-resistant clusters occurred between 1970s and 1990s, which subsequently accumulated rifampicin-resistance-conferring mutations in parallel and accounted for the local multidrug-resistant tuberculosis burden. The results of our study indicate that it may be possible to restrict MDR-TB evolution and dissemination by prioritizing screening for isoniazid (INH)-resistant TB strains before they become MDR-TB and by adopting measures that can limit their transmission.

2.
Front Public Health ; 11: 1059433, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891348

RESUMEN

Objective: To describe the trend of tuberculosis (TB) diagnosis in the migrant city Shenzhen, China, and analyze the risk factors of diagnosis delays. Methods: Demographic and clinical information of TB patients from 2011 to 2020 in Shenzhen were extracted. A bundle of measures to enhance TB diagnosis had been implemented since late 2017. We calculated the proportions of patients who underwent a patient delay (>30 days from syndrome onset to first care-seeking) or a hospital delay (>4 days from first care-seeking to TB diagnosis). Multivariable logistic regression was used to analyze the risk factors of diagnosis delays. Results: During the study period, 43,846 patients with active pulmonary TB were diagnosed and registered in Shenzhen. On average, the bacteriological positivity rate of the patients was 54.9%, and this increased from 38.6% in 2017 to 74.2% in 2020. Overall, 30.3 and 31.1% of patients had a patient delay or a hospital delay, respectively. Molecular testing significantly increased bacteriological positivity and decreased the risk of hospital delay. People >35 years old, the unemployed, and residents had a higher risk of delays in both patient care-seeking and hospital diagnosis than younger people, workers, or migrants. Compared with passive case-finding, active case-finding significantly decreased the risk of patient delay by 5.47 (4.85-6.19) times. Conclusion: The bacteriological positivity rate of TB patients in Shenzhen increased significantly but the diagnosis delays were still serious, which may need more attention when active case-finding in risk populations and optimization of molecular testing.


Asunto(s)
Tuberculosis Pulmonar , Tuberculosis , Humanos , Adulto , Tuberculosis/diagnóstico , Tuberculosis/epidemiología , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/epidemiología , Aceptación de la Atención de Salud , Factores de Riesgo , China/epidemiología
3.
Front Public Health ; 10: 1047965, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699912

RESUMEN

Objective: The burden of both general and drug-resistant tuberculosis in rural areas is higher than that in urban areas in China. To characterize the genetic structure and transmission risk of Mycobacterium tuberculosis in rural China, we used whole genome sequencing to analyze clinical strains collected from patients in two counties of Yichang for three consecutive years. Methods: From 2018 to 2020, sputum samples were collected for cultures from patients with suspected tuberculosis in Yidu and Zigui county, and DNA was extracted from the positive strains for genome sequencing. The online SAM-TB platform was used to identify the genotypes and drug resistance-related mutations of each strain, establish a phylogenetic tree, and calculated the genetic distances between pairwise strains. Twelve single nucleotide polymorphisms (SNPs) were used as thresholds to identify transmission clusters. The risk of related factors was estimated by univariable and multivariable logistic regression. Results: A total of 161 out of the collected 231 positive strains were enrolled for analysis, excluding non-tuberculous mycobacterium and duplicate strains from the same patient. These strains belonged to Lineage 2 (92, 57.1%) and Lineage 4 (69, 42.9%), respectively. A total of 49 (30.4%) strains were detected with known drug resistance-related mutations, including 6 (3.7%) multidrug-resistant-TB (MDR-TB) strains and 11 (6.8%) RIF-resistant INH-susceptible TB (Rr-TB) strains. Six of the MDR/Rr-TB (35.3%) were also resistant to fluoroquinolones, which made them pre-extensively drug-resistant TB (pre-XDR-TB). There were another seven strains with mono-resistance to fluoroquinolones and one strain with resistance to both INH and fluoroquinolones, making the overall rate of fluoroquinolones resistance 8.7% (14/161). A total of 50 strains (31.1%) were identified as transmission clusters. Patients under 45 years old (adjusted odds ratio 3.46 [95% confidential intervals 1.28-9.35]), treatment-naive patients (6.14 [1.39-27.07]) and patients infected by lineage 4 strains (2.22 [1.00-4.91]) had a higher risk of transmission. Conclusion: The drug resistance of tuberculosis in rural China, especially to the second-line drug fluoroquinolones, is relatively serious. The standardized treatment for patients and the clinical use of fluoroquinolones warrant attention. At the same time, the recent transmission risk of tuberculosis is high, and rapid diagnosis and treatment management at the primary care needs to be strengthened.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/uso terapéutico , Secuencia de Bases , China/epidemiología , Farmacorresistencia Bacteriana Múltiple/genética , Fluoroquinolonas/uso terapéutico , Mycobacterium tuberculosis/genética , Filogenia , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...